EINFLUSS VON LEWIS-SÄUREN AUF DAS ENDO-EXO-VERHALTNIS BEI DIELS-ALDER-ADDITIONEN DES CYCLOPENTADIENS

J. Sauer und J. Kredel

Institut für Organische Chemie der Universität München

(Received 29 November 1965)

P. Yates und P. Eaton (1) entdeckten, daß Lewis-Säuren die Geschwindigkeit von Diels-Alder-Reaktionen erheblich erhöhen. Andere Autoren (2) beobachteten das gleiche Phänomen.

Im System 9.10-Dimethylanthracen/Fumar- bzw. Maleinsäuredimethylester liegen bei 20° die Beschleunigungsfaktoren in Methylenchlorid als Solvens mit AlCl₃· O(C₂H₅)₂ als Lewis-Säure oberhalb 1 000 (3). Lewis-Säuren erhöhen nicht nur die Reaktionsgeschwindigkeit von Dienadditionen, sondern nehmen auch Einfluß auf das Verhältnis der strukturisomeren Diels-Alder-Addukte, die aus einer Vereinigung unsymmetrischer Diene und Dienophile resultieren (4).

Bei Versuchen zur partiellen asymmetrischen Synthese mit Hilfe von Diels-Alder-Additionen (5) studierten wir die Addition von Acrylsäure-(-)-menthylester an Cyclopentadien. Das Verhältnis I: II (R = (-)Menthyl) folgt bei Variation des Lösungswittels näherungsweise der Solvens-Skala nach J.A. Berson (6) (Tab. 1, Vers. 1-6). Eine Temperatursenkung begünstigt 1

TABELLE 1

Einfluß von Solvens und Katalysator auf das Verhältnis

		endo: exo-	Addition		
CH ₂	CH ₂ + II	→	+	CO ₂ F	₹
	H C	D ₂ R	r CO₂R	π	

		1			т.	
Vers.	Solvens	Temp.	Mol % Katalys.	% Ausb.	% Ι (endo)	% II (exo)
	R=(-)Menthyl					
1	Triäthylamin	35		97	73	27
2	Dioxan	35	_	100	75	25
3	1.2-Dimethoxyäthan	35	-	99	76	24
4	Aceton	35	-	100	76	24
5	Methylenchlorid	35	-	100	78	22
6	Methanol	35	-	100	83	17
7	Methylenchlorid	o	-	63	84	16
8	11	O	47	84	93	7
9	H	-70	47	67-81	97	3
10	11	-70	10	41	97	3
	R=CH ₃					
11	Methylenchlorid	0.0	_	22-51	82	18
12	1†	0	10	79-91	96	14
13	11	-70	5	50-54	98	2
14	11	-70	10	67-72	99	1
15	11	-70	25	62-77	99	1

im Gemisch (Tab. 1, Vers. 5 und 7). Einen wesentlich stärkeren Einfluß entfaltet ein Zusatz von AlCl₃ O(C₂H₅)₂ (Tab. 1. Vers. 7 und 8); bei -70° liegt das endo-Addukt I (Ra(-)Menthyl) zu 97 % im Stereoisomerengemisch vor, die Menge der anwesenden Lewis-Säure hat keinen Einfluß auf das Verhältnis I:II. Ein Zusatz von Lewis-Säure beschleunigt also die Diels-Alder-Reaktion und macht sie gleichzeitig hinsichtlich des auftretenden Stereoisomerengemisches selektiver.

Es handelt sich dabei offensichtlich um ein allgemeingültiges Phänomen; dies beweisen die Versuche 11-15 der Tabelle 1 (Additionen von Acrylsäuremethylester). Bei -70° kann
man praktisch reine endo-Verbindung I (R=CH3) gewinnen. Die
katalysierten Reaktionen lassen sich selbst bei -70° innerhalb 1-2 Stunden durchführen (100 mMol Dienophil, 3-4 Moläquivalente Dien werden im angegebenen Zeitraum zugetropft,
200-300 ccm Methylenchlorid). Die unkatalysierte Reaktion ist
dagegen unter vergleichbaren Konzentrationsverhältnissen bei
0° nach 17 bzw. 67 Stunden erst zu 22 bzw. 51 \$ abgelaufen.
Daß es sich dabei um kinetisch kontrollierte Reaktionen handelt, zeigt die Unabhängigkeit des Isomerenverhältnisses I:II
von der Gesamtausbeute I+II; gaschromatographisch reines II
(R=CH3) wird unter den Reaktionsbedingungen nicht zu I (R=CH3)
umgewandelt.

Tabelle 2 (Versuche 1-5) illustriert, daß auch <u>andere</u>

<u>Lewis-Säuren den gleichen Einfluß</u> auf die Reaktion ausüben.

Unter Standardbedingungen (Methylenchlorid, 0°, 10 Mol % Katalysator bezogen auf Acrylsäuremethylester, 3-4 Moläquivalente Dien pro Dienophil) erhält man im Mittel 96 % I und 4 % II

(jeweils R=CH₃). AlCl₃ in Nitromethan hat den gleichen Effekt (Tab. 2, Vers. 6).

TABELLE 2

Einfluß von Lewis-Säure-Katalysatoren auf das Verhältnis

endo: exo-Addition % Ausbeute I+II" Vers. Katalysator Nr. 22-51 82 2 BF3 0(C2H5)2 66 97 3 79-91 98 4 67-79 SnC1, 95 5 TiC1, 80 AlCl₃ in CH₃-NO₂ 4 50 96

Die Analyse der anfallenden Isomerengemische I+II erfolgte mit Hilfe der analytischen Gaschromatographie (R=(-)Menthyl: Carbowax-Dioleat 4000, bzw. nach Reduktion mit LiAlH₄ zu den Methylcarbinolen:Polyäthylenglykol 4000; R=CH₃:Polyäthylenglykol 4000; Fehlergrenze 1 %).

Die Katalysewirkung der Lewis-Säuren dürfte auf eine Komplexbildung mit der Carbonylfunktion der Acrylsäureester zu-

^{*} R=CH3

rückzuführen sein (3). IR-Untersuchungen in Methylenchlorid als Solvens mit Acrylsaure-(-)-menthylester und -methylester zeigten, daß die normale Carbonylabsorption bei 1710-1720/cm nach Zugabe von Lewis-Säure (AlCl $_3$ ·O(C $_2$ H $_5$) $_2$, SnCl $_4$ TiCl $_4$) schwächer wird, gleichzeitig treten längerwellige Absorptionsbanden zwischen 1560-1640/cm auf. Molarer Zusatz von ${\rm BF}_3$ ·O(C $_2$ H $_5$) $_2$ hat keinen Einfluß auf die IR-Carbonylabsorption.

Der Einfluß von Lewis-Säuren auf das Verhältnis der bei der Umsetzung unsymmetrischer Diene und Dienophile resultierenden Gemische stereoisomerer und strukturisomerer DielsAlder-Addukte wird zur Zeit eingehend untersucht. Eine Deutung der in Tabb. 1 und 2 gebotenen Resultate erfolgt zu einem späteren Zeitpunkt gemeinsam mit der Diskussion von Resultaten zur partiellen asymmetrischen Synthese mit Hilfe von DielsAlder-Additionen.

Der DEUTSCHEN FORSCHUNGSGEMEINSCHAFT sei an dieser Stelle für eine großzügige Sachbeihilfe aufrichtig gedankt.

LITERATUR

- (1) P. Yates und P. Eaton, J. Amer. chem. Soc. 82, 4436 (1960).
- (2) Z.B. G.J.Fray und R.Robinson, <u>J.Amer.chem.Soc.</u> 82, 249 (1961). H.Jahn und P.Goetzky, <u>Z.Chem.</u> 2, 311 (1962); <u>C.A.</u>, <u>58</u>, 5526 g (1963). T.Inukai und M.Kasai, <u>J.Org.Chemistry</u> 30, 3567 (1965).
- (3) J.Sauer, D.Lang und H.Wiest, Chem. Ber. 97, 3208 (1964).
- (4) E.F.Lutz und G.M.Bailey, J.Amer.chem.Soc. 86, 3899 (1964).
- (5) Diplomarbeit J.Kredel, Universität München 1965; Versammlungsbericht der Hauptversammlung Deutscher Chemiker in Bonn 1965, Angew. Chem. im Druck. S.a. H.M. Walborsky,

L.Barash und T.C.Davis, Tetrahedron 19, 2333 (1963).

(6) J.A.Berson, Z.Hamlet und W.A.Mueller, <u>J.Amer.chem.Soc.</u> 84, 297 (1962).